runtimeterror/content/posts/building-proxmox-templates-packer-github-actions/index.md
2024-06-16 19:56:25 -05:00

193 lines
10 KiB
Markdown

---
title: "Building Proxmox Templates with Packer and GitHub Actions"
date: 2024-06-12
# lastmod: 2024-06-12
draft: true
description: "Using Packer, Vault, a GitHub Actions workflow, and self-hosted runners to automatically build VM templates for my Proxmox homelab."
featured: false
toc: true
reply: true
categories: Tips
tags:
- automation
- cicd
- docker
- homelab
- iac
- linux
- packer
- proxmox
- tailscale
- vault
---
I've been [using Proxmox](/ditching-vsphere-for-proxmox/) in my [homelab](/homelab/) for a little while now, and I recently expanded the environment a bit with the addition of two HP Elite Mini 800 G9 computers. I figured it was time to start automating the process of building and maintaining my VM templates. I already had functional [Packer templates for VMware](https://github.com/jbowdre/packer-vsphere-templates) so I used that content as a starting point for the Proxmox builds themselves. Once I had the builds working locally, I just had to explore how to automate them.
This post will describe how I did it. It will cover a lot of the implementation details but may gloss over some general setup steps; you'll likely need at least passing familiarity with [Packer](https://www.packer.io/) and [Vault](https://www.vaultproject.io/) to take this on.
### Component Overview
There are a lot of parts to this setup, so let's start by quickly running through those:
- a **Proxmox host** to serve the virtual infrastructure and provide compute for the new templates,
- a **Vault instance** running in a container in the lab to hold the secrets needed for the builds,
- an **on-premise self-hosted GitHub runner** to simplify connectivity between GitHub and my homelab,
- and a **private GitHub repo** to hold the code and tell the runner when it's time to get to work.
{{% notice note "Private Repo!" %}}
GitHub [strongly recommends](https://docs.github.com/en/actions/hosting-your-own-runners/managing-self-hosted-runners/about-self-hosted-runners#self-hosted-runner-security) that self-hosted runners *only* be used with private repositories.
> This is because forks of your public repository can potentially run dangerous code on your self-hosted runner machine by creating a pull request that executes the code in a workflow.
I don't like the idea of randos running arbitrary code on my home infrastructure. So while I'm sharing my work publicly [in this repo](https://github.com/jbowdre/packer-proxmox-templates), the workflows there are disabled and there are no connected runners. I'm running my builds out of a private repo and recommend that you do the same.
{{% /notice %}}
### Proxmox Setup
The only configuration I did on the Proxmox side of things was to [create a user account](https://pve.proxmox.com/pve-docs/chapter-pveum.html#pveum_users) that Packer could use. I call it `packer` but don't set a password for it. Instead, I'll set up an [API token](https://pve.proxmox.com/pve-docs/chapter-pveum.html#pveum_tokens) for that account, making sure to uncheck the "Privilege Separation" box so that the token will inherit the same permissions as the user itself.
![Creating an API token](proxmox-token.png)
To use the token, I'll need the ID (in the form `USERNAME@REALM!TOKENNAME`) and the UUID-looking secret, which is only displayed once so I be sure to record it in a safe place.
Speaking of privileges, the [Proxmox ISO integration documentation](https://developer.hashicorp.com/packer/integrations/hashicorp/proxmox/latest/components/builder/iso) didn't offer any details on the minimum required permissions, and none of my attempts worked until I eventually assigned the Administrator role to the `packer` user.
Otherwise I'll just need to figure out the details like which network bridge, ISO storage, and VM storage the Packer-built VMs should use.
### Vault Configuration
I use [Vault](https://github.com/hashicorp/vault) to hold the configuration details for the template builds - not just traditional secrets like usernames and passwords, but basically *every environment-specific setting* as well. This approach lets others use my Packer code without having to change much (if any) of it; every value that I expect to change between environments is retrieved from Vault at run time.
Because this is just a homelab, I'm using [Vault in Docker](https://hub.docker.com/r/hashicorp/vault), and I'm making it available within my tailnet with [Tailscale Serve](/tailscale-serve-docker-compose-sidecar/) using the following `docker-compose.yaml`
```yaml
# torchlight! {"lineNumbers":true}
services:
tailscale:
image: tailscale/tailscale:latest
container_name: vault-tailscaled
restart: unless-stopped
environment:
TS_AUTHKEY: ${TS_AUTHKEY:?err}
TS_HOSTNAME: vault
TS_STATE_DIR: "/var/lib/tailscale/"
TS_SERVE_CONFIG: /config/serve-config.json
volumes:
- ./ts_data:/var/lib/tailscale/
- ./serve-config.json:/config/serve-config.json
vault:
image: hashicorp/vault
container_name: vault
restart: unless-stopped
environment:
VAULT_ADDR: 'https://0.0.0.0:8200'
cap_add:
- IPC_LOCK
volumes:
- ./data:/vault/data
- ./config:/vault/config
- ./log:/vault/log
command: vault server -config=/vault/config/vault.hcl
network_mode: "service:tailscale"
```
Vault's `./config/vault.hcl`:
```hcl
ui = true
listener "tcp" {
address = "0.0.0.0:8200"
tls_disable = "true"
}
storage "file" {
path = "/vault/data"
}
```
And Tailscale's `./serve-config.json`:
```json
# torchlight! {"lineNumbers":true}
{
"TCP": {
"443": {
"HTTPS": true
}
},
"Web": {
"vault.tailnet-name.ts.net:443": {
"Handlers": {
"/": {
"Proxy": "http://127.0.0.1:8200"
}
}
}
}
}
```
After performing the initial Vault setup, I then create a [kv-v2](https://developer.hashicorp.com/vault/docs/secrets/kv/kv-v2) secrets engine
for Packer to use:
```shell
vault secrets enable -path=packer kv-v2 # [tl! .cmd]
Success! Enabled the kv-v2 secrets engine at: packer/ # [tl! .nocopy]
```
And I define a [policy](https://developer.hashicorp.com/vault/docs/concepts/policies) which will grant the bearer read-only access to the data stored in the `packer` secrets as well as the ability to create and update its own token:
```shell
cat << EOF | vault policy write packer -
path "packer/*" {
capabilities = ["read", "list"]
}
path "auth/token/renew-self" {
capabilities = ["update"]
}
path "auth/token/create" {
capabilities = ["create", "update"]
}
EOF # [tl! .cmd:-12,1]
Success! Uploaded policy: packer2 # [tl! .nocopy]
```
Now I just need to create a token attached to the policy:
```shell
vault token create -policy=packer -no-default-policy
-orphan -ttl=4h -period=336h -display-name=packer # [tl! .cmd:-1,1 ]
Key Value # [tl! .nocopy:8]
--- -----
token hvs.CAES[...]GSFQ
token_accessor aleV[...]xu5I
token_duration 336h
token_renewable true
token_policies ["packer"]
identity_policies []
policies ["packer"]
```
Within the `packer` secrets engine, I have two secrets which each have a number of subkeys:
`proxmox` contains values related to the Proxmox environment:
| Key | Example value | Description |
|-----------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| `api_url` | `https://proxmox1.example.com:8006/api2/json` | URL to the Proxmox API |
| `insecure_connection` | `true` | set to `false` if your Proxmox host has a valid certificate |
| `iso_path` | `local:iso` | path for (existing) ISO storage |
| `iso_storage_pool` | `local` | pool for storing created/uploaded ISOs |
| `network_bridge` | `vmbr0` | bridge the VM's NIC will be attached to |
| `node` | `proxmox1` | node name where the VM will be built |
| `token_id` | `packer@pve!packer` | ID for an [API token](https://pve.proxmox.com/wiki/User_Management#pveum_tokens), in the form `USERNAME@REALM!TOKENNAME` |
| `token_secret` | `3fc69f[...]d2077eda` | secret key for the token |
| `vm_storage_pool` | `zfs-pool` | storage pool where the VM will be created |
`linux` holds values for the created VM template(s)
| Key | Example value | Description |
|-----------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| `bootloader_password` | `bootplease` | Grub bootloader password to set |
| `password_hash` | `$6$rounds=4096$NltiNLKi[...]a7Shax41` | hash of the build account's password (example generated with `mkpasswd -m sha512crypt -R 4096`) |
| `public_key` | `ssh-ed25519 AAAAC3NzaC1[...]lXLUI5I40 admin@example.com` | SSH public key for the user |
| `username` | `admin` | build account username |